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The authors present the results of a photoelastic study of the tempera-
ture stresses and displacements in piane wedges, The stresses are de-
termined for a heat source of length I placed at the apex of the wedge
and at distances I and 21 from the apex,

A number of technical problems reduce to the ques-

tion of finding the thermal stresses in plane wedges.
Such problems are encountered in the study of
mechanical friction, in metal-working with cutting
and abrading tools, ete. The magnitude and distribu~
tion of the thermal stresses have a considerable in-
fluence on the operating properties of machine parts
and tools. Thus, for example, in a number of cases
the temperature stresses in cutting tools, together
with the mechanical stresses due to external forces,
may cause cracking, chipping, and spalling of the cut-
ting edges. .

The causes and distribution of thermal stresses in
wedges are insufficiently understood. This is because
of the serious difficulties facing an analytical or ex-
perimental investigation of these stresses.

We have studied the temperature stresses in wedges

using heated models made from optically active mate-
rials using the photoelastic method described in [1,2].
We will consider the method of stress determina-
tion with reference to the example of a plane wedge
(cutting tool). The heat transfer conditions at the sur-
faces of the wedge are shown schematically in Fig.
la. A source of uniform intensity qg simulates heat-
ing of the wedge by the chip, and a sink qp takes into

be represented as the result of superimposing the
fields due to sources gy, qy, q3. For simplicity, the
continuous variation of the rate of heat transfer along
the length of the working surface of the wedge has
been replaced by the action of two heat sinks g, and g3
of length 7, which is perfectly permissible [3]. The
relations between the flux intensities of the basic
problem (Fig. 1a) and its components (Fig. 1b, ¢, d)
can be found from an examination of the temperatures
at any points on the wedge.

For the basic problem the temperatures at points
1, 2, 3 on the working side of the wedge at the center
of segments of length I can be expressed in terms of
the temperatures at the same points for the compo-
nent problems as follows:

8(1) == @11 - 812 - @131
0 (2) =0y— 03, — B3,
8 (3) = 8y — By — 8y, {1)

The temperature on the right side of these equations
can be calculated analytically or determined experi-
mentally. Figure 1b, c, d shows graphs of the varia-
tion of the dimensionless temperature ® on the work-
ing surface of the wedge obtained by electrical simu-
lation of the temperature fields on an EHDA-9 /60
integrator [3, 4].

The transition from dimensionless temperature
fields to actual temperatures can be based on the fol-
lowing known [4] relations:

account heat exchange with the cooling medium in ac- 0(1) = U Uy — g3t - Gal Ky,
cordance with Newton's law. When heating of the ALy A, AL,
wedge is due to several sources of different intensity, 8(2) = gl Yoy ~— gyl . gsl Yo
it is convenient to divide the solution of the basic ALy AL, AL,
problem into a number of component problems (see 0(3) = ¢l — — sl gl . @)
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Fig. 1. Diagram illustrating the process of heating of a
cutting edge: a) basic problem; b, c,d) its components.



JOURNAL OF ENGINEERING PHYSICS

201

4

Fig. 2. Stress patterns obtained at different instants of time

after beginning to heat a wedge with angle 8 = 50°.

A source

of length I = 14 mm was located at the apex of the wedge.
The scale is indicated in the photograph at bottom right.

The values of the quantities %, ®ip Mgy -+ .5 M33
and L;, L,, Iz are obtained by electrical simulation.

It is clear from (1) and (2) that if the temperatures
at points 1, 2, 3 are known, the temperatures for the
component problems can be found easily. However,
the component problems were simulated separately by
the following method.

A model of the wedge was made from the optically
sensitive material ED6~M and heated by a special de-
vice first on the segment ! at the apex of the wedge,
and then on segments separated from the apex of the
wedge by distances and 27, respectively. Since the
variation of temperature over the length of sources
g1; gy, and qs is only slight, as may be seen from
Fig. 1b, ¢, d, the heater can be made so as to ensure
a constant temperature on a given contact section be-
tween model and heater. In our experiments a con-
stant temperature of 60° C was maintained at the end
face of the heater. Up to this temperature the elastic
modulus and optical constant of the above-mentioned
model material do not vary [1, 2]. On the cooled sec—
tion of the wedge in separate modeling it is convenient
to replace the heat drain to the surrounding medium by
heating, since this change subsequently affects only
the sign of the stresses. In the process of simulation
the stress pattern was observed with a KST~5 polarim~
eter and photographed with a violet filter (wavelengt
435.8 uu). In this way we recorded the variation of the
stress pattern from the moment of application of the
heater to the moment when the pattern remained al-
most unchanged over a lengthy heating period (in our
experiments 10 min). Figure 2 shows stress patterns
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for a wedge with an angle 8 = 50° obtained by the meth-
od described above at various instants from the begin-
ning of heating. From such stress patterns we con-
structed curves (Fig. 3) showing the variation of the
maximum stresses as a function of heating time and
the position of the heater relative to the apex.

It is clear from Fig. 3 that the maximum stresses
appear at the moment of application of the heater. The
value of the maximum stresses is roughly the same
irrespective of the wedge angle 8. Extrapolating the
stress curves to intersection with the ordinate axis,
we obtain approximate values for the maximum
stresses o* of about 650 N/cm’.

The maximum stresses o* can be calculated theo-
retically and compared with the experimental results.
For a plane wedge [5] the stresses can be found from
the formula

o* = —aFAG. (3)
In our experiment A® = 60°—22° = 38° C (22° C is the
temperature of the ambient medium, 60° C is the
temperature at the face of the heater). For ED6-M
material o= 52 - 10%, E = 3.3-3.51 - 10° N/cm?.

Substituting the above data in (3), we obtain ¢* =
=670 N/cm?. As may be seen from this example, the
maximum stresses obtained experimentally and cal-
culated theoretically are in good agreement. It can be
seen from Fig. 3 that as heating continues the stresses
fall. Initially this decrease is very rapid, then it
slows somewhat. The stresses are stabilized about
10 min after the beginning of heating. At this point the
maximum stresses in the model have fallen by a fac~
tor of about 3—5. The smaller the wedge angle and the
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Fig. 3 Maximum siresses o, N/cm?, on the heated side of a wedge with wedge angle 8 = 90° (a)
and 70° (b). Fo = a7/1* {7 in sec).
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closer the heat source to the apex, the greater the fall

in maximum stresses. In Fig. 4 we have plotted curves

of the normal compressive stresses along the contour
of the model for the steady-state temperature field

(r > 10 min). It is clear that the general nature of the
stress distribution is roughly the same for all wedge
angles. The maximum stresses developed on the
heated side of the model. The stress maximum occurs
at a cerfain distance from the apex irrespective of the
position of the source.

Fig. 4. Normal compressive stresses o,

N/cem?, along contour of model: 1) heat

source at apex, 2) at distance ! from
apex, 3) at distance 2] from apex.

Knowing the temperature stress distribution on the
model, we can determine the stresses in real wedges.
In the case of a plane state of stress [5] the stress
components can be found from the formulas

o = G0 o = 2P B _ g0
= oy’ Y w dxdy

where & is a stress function satisfying the equation
V'O 4+ aEv:O =0. (5)

Using formulas (4) to determine the stresses in the
wedge and the model and taking their ratio, we obtain

0 . oo ’2o |,
G, = '—6—26 Gx’ oy =—%—’ Gy, T‘Y—_"W Txy. (6)
We introduce similarity scales for the linear di-

mensions, temperature, and mechanical characteris-
tics:

! 8 D
K;—- ok Ke——ej. Ko = @,,
o E
- % k=L (7)
Kq pe Ke E'
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The coefficients K; and K@ are independent, and the
coefficient K¢ is determined in terms of the other
coefficients by applying Eq. (5) to the wedge and the
model. This enables us to obtain

Ko =K KeKo.
Accordingly, we can rewrite relations (8) in the form
0x=KqKEKQG;; O'yquKEKGU;,,
Ty = Ko K Koy, (8)

If we substitute in (8) the values of the mechanical
characteristics and the heating temperature of the
model (in our case ® = 60°C, o =52 - 10%, E = 3.3—
3.51 + 10° N/cm?, we obtain

¢,=0015aE8g, 0,=0015aE Ga'y,
Tey = 0.0150 EOT. (9)

Equations (9) can be used to calculate the stresses at
the contour of the real wedge for the period of station-
ary heat transfer.

Figure 5 shows the variation of the stresses along
the heated contour in wedges made of different tool
materials when the average temperature on the con~
tact length (0 = ¢ = 1) is equal to 570°,

It is clear from Fig. 5 that at the same heating
temperature the maximum stresses occur in wedges
made of alloy VK8 and the minimum stresses in dia-
mond wedges. The stresses at the instant of contact
between the cutting edge and the part are calculated
from Eq. (3). For example, for a wedge made of VK8
alloy (¢=5.5"107%, E=5.4"- 10" N/cm? at a tem-
perature ® = 570° the maximum stresses will be 1680
N/mm?. Under similar heating conditions the maxi~
mum stresses in diamond cutters (¢ = 1.2 - 107¢, E =
=8.25 * 10' N/cm?) will be only about 370 N/mm?,
This calculation, without claiming to describe every
aspect of the matter, does show that at the same cut-
ting temperatures a diamond tool experiences lower
thermal stresses.
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Fig. 5. Normal compressive stresses g, N/cem?,

along heated contour of wedges (¢ = x/1) made of

different materials [1) diamond; 2) R18 and

T15K6; 3) VK6; 4) VK8]. Wedge angle 8 =70°,
heat source on length[.

For other cutting materials the stresses cannot be
compared solely on the basis of the individual curves
in Fig. 5. In fact, owing to the different thermal con-
ductivities of the tool material under the same cutting
conditions different temperatures develop at the work-
ing surfaces of cutters made of different materials,
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which is not taken into account in Fig. 5. A final con-
clusion concerning the temperature stresses and ef-
ficiency of a given wedge material must be based on
specific heating conditions with allowance for the
thermophysical and mechanical characteristics of the
wedge material.

After determining the stresses it is possible to find
the displacement of individual points of the model and
then calculate the displacement in the real wedge.
This is necessary, for example, in order to find the
temperature errors due to thermal displacements of
the cutting edge.

From known relations for the plane problem

gy = %; s,,:a@%——é Cys
using (8) we find the displacements along the sideof the
wedge on a segment of length I,

Iy A

0= K,ij@’dx’ — KiKo KK %S o dx', (10)
0 0

since on the contour gy = 0. In the latter equation the
integrands are the areas of the model temperature and
stress diagrams.

In order to determine the first integral it is neces-
sary to know the temperature distribution over the
model. Using the graphs of Fig. 1, by planimetry we

t

can find the value of \ ®'dx’ for any of the three posi-

0
tions of the heating source. For example, when the

source is located at the apex of the wedge (for g = 7¢°)
the value of this integral is 3650 deg - mm (7| was
taken equal to 107). The second integral can be found
by planimetry of the curves in Fig. 4. For example,
for a wedge with 8 = 70° and a source located in the
first position the value of the integral willbe 4.5 N/mm.
As may be seen from Eq. (10), the displacement
along the side of the wedge depends on two compo-
nents, the first of which corresponds to the free tem-
perature expansion of the wedge under the influence of
the temperature field, while the second reflects the
effect of the temperature stresses preventing the free
temperature expansion of the wedge. Calculations
based on (10) show that the value of the second term
is usually one order smaller than the first. Conse-
quently, in practical calculations it can be neglected
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and the displacement found from the formula
I
u=~KKea | 6dx. (11)
[}
NOTATION

®(1), 8(2), and ©(3) represent temperature at points
1, 2, and 3 on side of wedge, respectively; ®;; and @, are
the temperatures at point 1 due to sources qy, q,, etc.,
A is thermal conductivity of wedge material; Ly, L,, and
Ls are model shape factors for sources located in posi-
tions 1, 2, and 3 (for wedge with 8 = 70°, L; = 0.184,
1, =0.209, I3 =0.210); »q is the dimensionless quan-
tity indicating the fraction of the maximum tempera-
ture represented by the temperature at point 1 due to
source q; {the quantities %y, i3, ..., A3 are simi-
larly interpreted); [ is the length of heat source; I, is
the length on which displacement of the wedge is con-
sidered; o are stresses in cutter; ¢' are stresses in
model; o* are maximum stresses; o is the coefficient
of linear expansion; E is the modulus of elasticity of
first kind; A® is temperature difference between mod-
el and ambient medium; oy, Oy, and Txy are the stress
components in wedge; ex is the relative strain in di-
rection of x-axis; u is the displacement in direction of
x-axis; u is Poisson's ratioc. A prime indicates a mod-
el quantity.
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